<u>Machine Learning and High-Energy Radio</u> <u>Neutrino Astronomy Trigger Thresholds</u>

Brian Clark

CHEAPR Workshop Department of Physics The Ohio State University

August 26, 2016

The OSU ARA Team is generously supported by:

- NSF CAREER Award 1255557
- NSF GRFP Award DGE-1343012
- NSF Grant 1404266 and NSF BigData Grant 1250720
- US-Israel Binational Science Foundation Grant 2012077
- The Ohio State University Department of Physics, Center for Cosmology and Astroparticle Physics (CCAPP), and Ohio Supercomputing Center (OSC)

Punchline First

ML is great at the analysis level...

But why can't its answer help you at the trigger/ filter level?

High-Energy Radio Neutrino Experiments

Antarctic Impulsive Transient Antenna (ANITA)

Askaryan Radio Array (ARA)

Antarctic Ross Ice-Shelf Antenna Neutrino Array (ARIANNA)

Where I'll focus

today

Triggering and Experimental Sensitivity

Trigger Motivation

- Constant readout and storage of a sensor is not practical
- Need ways to reject background without losing efficiency on rare astrophysical events

Backgrounds

- Radio thermal emission of ice
- Anthropogenic sources: satellites, radios, ...
- Electromagnetic interferences: lighters, static discharge, ...

Evaluating a Trigger

- Energy "Threshold": Energy below which an experiment expects to detect no (or few) events
- Effective Volume: "aperture" for event collection
 - Computed by Monte Carlo: interact N_{int} neutrinos, in volume V_{int} , detect N_{det}

$$V_{eff}(E) = \frac{N_{det}(E_{\nu}, \vec{r})}{N_{int}} \times V_{int}$$

ARA Trigger

<u>Hardware Constraints</u>: Storage space: 5.4 TB/yr \rightarrow 5 Hz max storable trigger rate

Trigger Process: 2 Tiers

- LO: Power at a single antenna exceeds threshold : Rate = 10 kHz
- L1: 3/8 same pol L0 triggers in 170 ns window : Rate = 5-25 Hz

ANITA-2 Trigger

<u>Hardware Constraints</u>: 30 Hz max "write-to-disk" rate <u>Trigger Process: 4 Tiers (L0 \rightarrow L3)</u>

Evolution of the ANITA Trigger

ANITA-1

- Same power threshold and coincidence requirement as ANITA-2
- BUT, conversion to right and left circular polarization (LCP and <u>RCP) before trigger</u>! (combinatorics boost)

ANITA-2

- See previous slide...
- Summary: power thresholds + combinatorics, <u>V-pol trigger only</u>

ANITA-1 discovers CRs

ANITA-3

- No banded trigger, <u>V and H-pol trigger</u>
- Rough "interferometry pass"
 - Triggers between stacked antennas must have causal timing
 - Require adjacent antennas

ANITA + ARA: Sensitivity and the Trigger

- Lower thresholds = weaker signals pass the trigger
- For fixed SNR, can have...
 - Events of lower energy
 - Events from further distances away
 - More accepted viewing angles
 - Larger effective volumes: $V_{eff} \propto R^3$

$$V_{signal} \propto \frac{E_0}{R} \exp\left(-\frac{\theta - \theta_C}{2.2^\circ}\right)^2$$

ML Prospects

- Trigger level: build ML equation into firmware trigger logic
- Filter level: prioritize data for transmission to the north
- Practical example: Regression: solve for a threshold of zero
- Discussion: Any ideas from the participants?

Summary

1. Trigger thresholds govern the accessible physics, particularly the energy

2. Can ML make our triggers/filters smarter?

3. Discussion please!

Thank You!